Differences between biological networks corresponding to disease conditions can help delineate the underlying disease mechanisms. Existing methods for differential network analysis do not account for dependence of networks on covariates. As a result, these approaches may detect spurious differential connections induced by the effect of the covariates on both the disease condition and the network. To address this issue, we propose a general covariate-adjusted test for differential network analysis. Our method assesses differential network connectivity by testing the null hypothesis that the network is the same for individuals who have identical covariates and only differ in disease status. We show empirically in a simulation study that the covariate-adjusted test exhibits improved type-I error control compared with na\"ive hypothesis testing procedures that do not account for covariates. We additionally show that there are settings in which our proposed methodology provides improved power to detect differential connections. We illustrate our method by applying it to detect differences in breast cancer gene co-expression networks by subtype.


翻译:与疾病条件相对应的生物网络之间的差异可以帮助划分基本疾病机制。 现有的差别网络分析方法并不说明网络对共变体的依赖性。 因此,这些方法可以发现共变体对疾病状况和网络的影响引起的虚假差异连接。 为了解决这个问题,我们提议对差异网络分析进行一般的共变调整测试。 我们的方法通过测试无效假设来评估差异网络连接性。 我们通过模拟研究, 即网络对具有相同共变体和疾病状态仅具有差异的个人来说是相同的。 我们在模拟研究中以经验方式表明,共变调整的测试显示,与不计入共变体的天性假设测试程序相比,共变体型I的错误控制得到了改进。 我们还表明,在有些环境中,我们拟议的方法提供了更好的能力来检测差异连接。 我们通过应用这一方法来用子型来检测乳腺癌基因共表型网络的差异,来说明我们的方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员