Modern text classification systems have impressive capabilities but are infeasible to deploy and use reliably due to their dependence on prompting and billion-parameter language models. SetFit (Tunstall et al., 2022) is a recent, practical approach that fine-tunes a Sentence Transformer under a contrastive learning paradigm and achieves similar results to more unwieldy systems. Text classification is important for addressing the problem of domain drift in detecting harmful content, which plagues all social media platforms. Here, we propose Like a Good Nearest Neighbor (LaGoNN), an inexpensive modification to SetFit that requires no additional parameters or hyperparameters but modifies input with information about its nearest neighbor, for example, the label and text, in the training data, making novel data appear similar to an instance on which the model was optimized. LaGoNN is effective at the task of detecting harmful content and generally improves performance compared to SetFit. To demonstrate the value of our system, we conduct a thorough study of text classification systems in the context of content moderation under four label distributions.
翻译:现代文本分类系统具有令人印象深刻的能力,但由于依赖快速和10亿参数语言模型,因此无法可靠地部署和使用。SetFit(Tunstall等人,2022年)是一种最近的实用方法,在对比式学习范式下微调一个句变换器,并取得与较不易操作的系统类似的结果。 文本分类对于解决在发现有害内容时的域漂移问题十分重要,这一问题困扰着所有社交媒体平台。在这里,我们建议像一个Good Nearest Neighbor(LAGONN)一样,对SetFit进行廉价的修改,不需要额外的参数或超分光度,但根据有关其近邻的信息修改输入,例如,在培训数据中,标签和文本似乎与模型优化的范例相似。 LaGONN在发现有害内容和与SetFit相比总体提高性能方面是有效的。 为了证明我们系统的价值,我们在四个标签分布下对文本分类系统进行了彻底的研究,在内容调调的范围内对文本分类系统进行了彻底的研究。</s>