Modern text classification systems have impressive capabilities but are infeasible to deploy and use reliably due to their dependence on prompting and billion-parameter language models. SetFit (Tunstall et al., 2022) is a recent, practical approach that fine-tunes a Sentence Transformer under a contrastive learning paradigm and achieves similar results to more unwieldy systems. Text classification is important for addressing the problem of domain drift in detecting harmful content, which plagues all social media platforms. Here, we propose Like a Good Nearest Neighbor (LaGoNN), an inexpensive modification to SetFit that requires no additional parameters or hyperparameters but modifies input with information about its nearest neighbor, for example, the label and text, in the training data, making novel data appear similar to an instance on which the model was optimized. LaGoNN is effective at the task of detecting harmful content and generally improves performance compared to SetFit. To demonstrate the value of our system, we conduct a thorough study of text classification systems in the context of content moderation under four label distributions.


翻译:现代文本分类系统具有令人印象深刻的能力,但由于依赖快速和10亿参数语言模型,因此无法可靠地部署和使用。SetFit(Tunstall等人,2022年)是一种最近的实用方法,在对比式学习范式下微调一个句变换器,并取得与较不易操作的系统类似的结果。 文本分类对于解决在发现有害内容时的域漂移问题十分重要,这一问题困扰着所有社交媒体平台。在这里,我们建议像一个Good Nearest Neighbor(LAGONN)一样,对SetFit进行廉价的修改,不需要额外的参数或超分光度,但根据有关其近邻的信息修改输入,例如,在培训数据中,标签和文本似乎与模型优化的范例相似。 LaGONN在发现有害内容和与SetFit相比总体提高性能方面是有效的。 为了证明我们系统的价值,我们在四个标签分布下对文本分类系统进行了彻底的研究,在内容调调的范围内对文本分类系统进行了彻底的研究。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
46+阅读 · 2022年7月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
23+阅读 · 2020年9月16日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员