Binary regression models are commonly used in disciplines such as epidemiology and ecology to determine how spatial covariates influence individuals. In many studies, binary data are shared in a spatially aggregated form to protect privacy. For example, rather than reporting the location and result for each individual that was tested for a disease, researchers may report that a disease was detected or not detected within geopolitical units. Often, the spatial aggregation process obscures the values of response variables, spatial covariates, and locations of each individual, which makes recovering individual-level inference difficult. We show that applying a series of transformations, including a change of support, to a bivariate point process model allows researchers to recover individual-level inference for spatial covariates from spatially aggregated binary data. The series of transformations preserves the convenient interpretation of desirable binary regression models that are commonly applied to individual-level data. Using a simulation experiment, we compare the performance of our proposed method under varying types of spatial aggregation against the performance of standard approaches using the original individual-level data. We illustrate our method by modeling individual-level probability of infection using a data set that has been aggregated to protect an at-risk and endangered species of bats. Our simulation experiment and data illustration demonstrate the utility of the proposed method when access to original non-aggregated data is impractical or prohibited.
翻译:在流行病学和生态学等学科中,通常使用二元回归模型来确定空间共变对个人的影响。在许多研究中,二元数据以空间集成形式共享,以保护隐私。例如,研究人员不报告为疾病测试的每个人的位置和结果,而是报告在地缘政治单位中检测到或未检测到疾病。空间集成过程往往模糊反应变量、空间共变和每个个人位置的值,这使得难以恢复个人层次的推论。我们表明,应用一系列转换,包括改变支持,使研究人员能够从空间集成的二元数据中恢复个人层次的空间共变异的推论。一系列变论保留了通常应用于个人层次数据的可取的二元回归模型的方便解释。我们通过模拟实验,将我们拟议方法在不同类型的空间汇总中的性能与使用个人层次原始数据的性能进行比较,我们通过使用一组数据来模拟个人层次感染概率的可能性(包括支持的改变),从而可以从空间集成的二元数据中恢复空间共变异性空间共变异性。一系列的变异性可以保留对常见性回归模型的解释,通常用于个人层次数据。我们提出的风险和不切切换的实验数据,用以对风险的原始数据进行对比。在风险和不切换数据进行模拟时,用以模拟模拟模拟,用以模拟,以模拟试验,用以模拟,以模拟试验,以证明不切合用不切合用不切合。