The current practice in land cover/land use change analysis relies heavily on the individually classified maps of the multitemporal data set. Due to varying acquisition conditions (e.g., illumination, sensors, seasonal differences), the classification maps yielded are often inconsistent through time for robust statistical analysis. 3D geometric features have been shown to be stable for assessing differences across the temporal data set. Therefore, in this article we investigate he use of a multitemporal orthophoto and digital surface model derived from satellite data for spatiotemporal classification. Our approach consists of two major steps: generating per-class probability distribution maps using the random-forest classifier with limited training samples, and making spatiotemporal inferences using an iterative 3D spatiotemporal filter operating on per-class probability maps. Our experimental results demonstrate that the proposed methods can consistently improve the individual classification results by 2%-6% and thus can be an important postclassification refinement approach.
翻译:土地覆盖/土地利用变化分析的现行做法在很大程度上依赖于多时数据集的个别分类地图,由于获取条件不同(例如照明、传感器、季节差异),所生成的分类图在进行稳健的统计分析时往往不一致。 3D几何特征显示在评估时间数据集差异方面是稳定的。因此,在本篇文章中,我们调查他使用从卫星数据获得的多时空或时光和数字表面模型进行空间空间数据分类。我们的方法包括两个主要步骤:利用随机森林分类器和有限的培训样本制作每类概率分布图,并利用以单级概率图操作的迭接3D波地透镜过滤器进行空间时空推断。我们的实验结果表明,拟议方法可以不断将个人分类结果提高2%至6%,从而成为重要的分类后改进方法。