In spite of considerable practical importance, current algorithmic fairness literature lacks in technical methods to account for underlying geographic dependency while evaluating or mitigating fairness issues for spatial data. We initiate the study of spatial fairness in this paper, taking the first step towards formalizing this line of quantitative methods. Fairness considerations for spatial data often get confounded by the underlying spatial autocorrelation. We propose hypothesis testing methodology to detect the presence and strength of this effect, then mitigate it using a spatial filtering-based approach -- in order to enable application of existing bias detection metrics. We evaluate our proposed methodology through numerical experiments on real and synthetic datasets, demonstrating that in presence of several types of confounding effects due to the underlying spatial structure our testing methods perform well in maintaining low type-II errors and nominal type-I errors.
翻译:尽管具有相当大的实际重要性,但目前的算法公平文献缺乏技术方法,无法在评价或减轻空间数据公平问题的同时,对潜在的地理依赖性进行解释。我们开始在本文件中研究空间公平性,这是正式确定这一定量方法线的第一步。对空间数据的公平性考虑往往被潜在的空间自动关系所混淆。我们提出假设测试方法,以检测这种效应的存在和强度,然后使用以空间过滤为基础的方法来减轻这种影响 -- -- 以便应用现有的偏差检测指标。我们通过对真实和合成数据集进行数字试验来评估我们拟议的方法,我们通过对真实和合成数据集进行数字试验来评估,表明,由于基本的空间结构,在出现若干类型的混乱影响时,我们的测试方法在维持低类型二误差和名义类型一误差方面表现良好。