Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
翻译:实体对齐(EA)的目的是在两个知识图(KGs)之间找到相等的实体。虽然设计了许多神经EA模型,但它们主要是用标签数据学习的。在这项工作中,我们争辩说,一个KG内部的不同实体由于实体之间潜在的依赖性,应该有一个与另一个KG相匹配的对应实体。因此,作出兼容的预测应该是培训EA模型以及匹配标签数据的目标之一:但在目前的方法中,这一方面被忽视。对于使神经EA模型具有兼容性的动力,我们设计了一个培训框架,解决三个问题:(1) 如何测量EA模型的兼容性;(2) 如何将兼容性属性注入EA模型;(3) 如何优化兼容性模型的参数。关于广泛使用的数据集的广泛实验显示了将兼容性纳入EA模型的优势。事实上,在我们框架内仅使用标签数据中的5 ⁇ 来培训的最新神经EA模型可以与使用20 ⁇ 的标签数据的监督性培训取得类似的效果。