In this paper, we propose to utilize Automated Machine Learning to adaptively search a neural architecture for deepfake detection. This is the first time to employ automated machine learning for deepfake detection. Based on our explored search space, our proposed method achieves competitive prediction accuracy compared to previous methods. To improve the generalizability of our method, especially when training data and testing data are manipulated by different methods, we propose a simple yet effective strategy in our network learning process: making it to estimate potential manipulation regions besides predicting the real/fake labels. Unlike previous works manually design neural networks, our method can relieve us from the high labor cost in network construction. More than that, compared to previous works, our method depends much less on prior knowledge, e.g., which manipulation method is utilized or where exactly the fake image is manipulated. Extensive experimental results on two benchmark datasets demonstrate the effectiveness of our proposed method for deepfake detection.


翻译:在本文中,我们建议使用自动机学习来适应性地搜索神经结构以进行深假检测。 这是第一次使用自动机学习来进行深假检测。 根据我们探索的搜索空间,我们建议的方法与以往的方法相比,具有竞争性的预测准确性。为了改进我们方法的普及性,特别是当培训数据和测试数据被不同方法所操纵时,我们建议了网络学习过程中的一个简单而有效的战略:在预测真实/假标签的同时,对潜在的操纵区域进行估计。与以往的工程人工设计神经网络不同,我们的方法可以使我们从网络建设的高劳动力成本中解脱出来。与以往的工程相比,我们的方法远不如以往的知识,例如,我们使用的是哪些操纵方法,或者准确的假图像被操纵。两个基准数据集的广泛实验结果显示了我们提议的深假检测方法的有效性。

1
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
65+阅读 · 2021年8月1日
专知会员服务
92+阅读 · 2021年1月24日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
26+阅读 · 2020年2月21日
Credibility-based Fake News Detection
Arxiv
3+阅读 · 2019年11月2日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
4+阅读 · 2019年5月1日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2021年10月6日
Arxiv
26+阅读 · 2020年2月21日
Credibility-based Fake News Detection
Arxiv
3+阅读 · 2019年11月2日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
4+阅读 · 2019年5月1日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员