Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of users. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an author's history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.
翻译:假新闻可能严重误导那些经常依靠在线来源和社交媒体获取信息的人。 目前关于假新闻探测的研究主要侧重于分析假新闻内容及其如何在用户网络上传播。 在本文中,我们强调通过评估其可信度来探测假新闻。 通过分析公共假新闻数据,我们显示,新闻来源(和作者)的信息可以有力地显示其可信度。 我们的研究结果表明,作者与假新闻建立联系的历史,以及新闻文章的作者数量,在发现假新闻方面可以发挥重要作用。 我们的方法可以帮助改进传统的假新闻探测方法,其中内容特征常常用来探测假新闻。