Vehicular fog computing (VFC) pushes the cloud computing capability to the distributed fog nodes at the edge of the Internet, enabling compute-intensive and latency-sensitive computing services for vehicles through task offloading. However, a heterogeneous mobility environment introduces uncertainties in terms of resource supply and demand, which are inevitable bottlenecks for the optimal offloading decision. Also, these uncertainties bring extra challenges to task offloading under the oblivious adversary attack and data privacy risks. In this article, we develop a new adversarial online learning algorithm with bandit feedback based on the adversarial multi-armed bandit theory, to enable scalable and low-complexity offloading decision making. Specifically, we focus on optimizing fog node selection with the aim of minimizing the offloading service costs in terms of delay and energy. The key is to implicitly tune the exploration bonus in the selection process and the assessment rules of the designed algorithm, taking into account volatile resource supply and demand. We theoretically prove that the input-size dependent selection rule allows to choose a suitable fog node without exploring the sub-optimal actions, and also an appropriate score patching rule allows to quickly adapt to evolving circumstances, which reduce variance and bias simultaneously, thereby achieving a better exploitation-exploration balance. Simulation results verify the effectiveness and robustness of the proposed algorithm.


翻译:电雾计算(VFC) 将云计算能力推向互联网边缘分布的雾节点,通过任务卸载,为车辆计算密集和低密度的计算服务,通过任务卸载,但是,在资源供求方面存在着不确定性,这是最佳卸载决定的不可避免的瓶颈。此外,这些不确定性给在明显的敌人攻击和数据隐私风险下进行卸载任务带来了额外的挑战。在本篇文章中,我们开发了新的对抗性在线学习算法,根据对抗性多武装强盗理论,提供土匪反馈,使机动性低密度和低密度的计算服务能够卸载决策。具体地说,我们侧重于优化雾节点选择,目的是在延迟和能源方面最大限度地减少卸载服务成本,这是不可避免的瓶颈。关键是要在选择过程中和设计算法的评估规则中隐含着调控,同时考虑到不稳定的资源供需。我们理论上证明,投入规模的依附性选择规则允许选择合适的雾节点,而无需探索亚敏度行动,还可以优化平衡性决策。我们侧重于优化的评分差规则,从而能够同时调整平衡度,从而快速调整和平衡。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Partitioned Active Learning for Heterogeneous Systems
Arxiv
0+阅读 · 2021年10月26日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员