We study the problem of estimating the density $f(\boldsymbol x)$ of a random vector ${\boldsymbol X}$ in $\mathbb R^d$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. An optimal spanning tree minimizes the Kullback-Leibler divergence between $f$ and $f_{T}$. From i.i.d. data we identify an optimal tree $T^*$ and efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz $f$ with bounded support, $\mathbb E \left\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\right\}=O\big(n^{-1/4}\big)$, a dimension-free rate.


翻译:我们研究估算一个随机矢量 $\ boldsylmbol X} 的密度$f(\ boldsymbol x) 的问题。 对于在顶端设置 $1,\ dots,d ⁇ $(美元) 上定义的横贯树的$T$, 树密度$f\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2021年9月16日
专知会员服务
95+阅读 · 2021年2月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Top
微信扫码咨询专知VIP会员