Data-driven methods for personalizing treatment assignment have garnered much attention from clinicians and researchers. Dynamic treatment regimes formalize this through a sequence of decision rules that map individual patient characteristics to a recommended treatment. Observational studies are commonly used for estimating dynamic treatment regimes due to the potentially prohibitive costs of conducting sequential multiple assignment randomized trials. However, estimating a dynamic treatment regime from observational data can lead to bias in the estimated regime due to unmeasured confounding. Sensitivity analyses are useful for assessing how robust the conclusions of the study are to a potential unmeasured confounder. A Monte Carlo sensitivity analysis is a probabilistic approach that involves positing and sampling from distributions for the parameters governing the bias. We propose a method for performing a Monte Carlo sensitivity analysis of the bias due to unmeasured confounding in the estimation of dynamic treatment regimes. We demonstrate the performance of the proposed procedure with a simulation study and apply it to an observational study examining tailoring the use of antidepressants for reducing symptoms of depression using data from Kaiser Permanente Washington (KPWA).
翻译:由个人驱动的治疗任务个人化方法已引起临床医生和研究人员的极大关注。动态治疗制度通过一系列决定规则将这一点正规化,这些决定规则将个人病人特征映射成推荐的治疗。观察研究通常用于估计动态治疗制度,因为进行连续的多次随机调查的费用可能令人望而却步。然而,从观察数据中估算动态治疗制度可能会由于不测的混乱而在估计的治疗制度中造成偏差。敏感性分析有助于评估研究结论对潜在的非计量混杂者具有多大的稳健性。蒙特卡洛敏感性分析是一种概率性方法,涉及从分布中推断和取样有关偏差的参数。我们提出了一个方法,用于对在估算动态治疗制度时未测得混杂造成的偏差进行蒙特卡洛敏感性分析。我们用模拟研究来证明拟议程序的执行情况,并应用于一项观测研究,研究利用华盛顿开赛尔常设大学(Kiser Alter Washing)的数据对抗抑郁剂用于减少抑郁症症状进行裁量。