Segmentation of macro and microvascular structures in fundoscopic retinal images plays a crucial role in the detection of multiple retinal and systemic diseases, yet it is a difficult problem to solve. Most neural network approaches face several issues such as lack of enough parameters, overfitting and/or incompatibility between internal feature-spaces. We propose Attention W-Net, a new U-Net based architecture for retinal vessel segmentation to address these problems. In this architecture, we have two main contributions: Attention Block and regularisation measures. Our Attention Block uses attention between encoder and decoder features, resulting in higher compatibility upon addition. Our regularisation measures include augmentation and modifications to the ResNet Block used, which greatly prevent overfitting. We observe an F1 and AUC of 0.8407 and 0.9833 on the DRIVE and 0.8174 and 0.9865 respectively on the CHASE-DB1 datasets - a sizeable improvement over its backbone as well as competitive performance among contemporary state-of-the-art methods.
翻译:光学视网膜图象中的宏观和微血管结构的分解在发现多种视网膜和系统疾病方面起着关键作用,但这是一个难以解决的问题。大多数神经网络方法都面临若干问题,例如缺乏足够的参数、内部地貌空间之间过于适应和/或不相容。我们建议注意W-Net,这是一个新的基于U-Net的视网结构,用于对视网膜进行分解,以解决这些问题。在这个结构中,我们有两个主要贡献:注意区块和常规化措施。我们的注意区在编码器和分解器两个功能之间使用注意点,从而增加兼容性。我们的常规化措施包括扩大和修改所使用的ResNet区块,从而大大防止了超配。我们在CHASE-DB1数据集上分别观察到了0.8407和0.9833的F1和AUC,分别是0.8174和0.9865,这是对CHASE-D1数据组的脊椎的一个相当大的改进,也是当代最先进方法的竞争性性。