Capturing the global topology of an image is essential for proposing an accurate segmentation of its domain. However, most of existing segmentation methods do not preserve the initial topology of the given input, which is detrimental for numerous downstream object-based tasks. This is all the more true for deep learning models which most work at local scales. In this paper, we propose a new topology-preserving deep image segmentation method which relies on a new leakage loss: the Pathloss. Our method is an extension of the BALoss [1], in which we want to improve the leakage detection for better recovering the closeness property of the image segmentation. This loss allows us to correctly localize and fix the critical points (a leakage in the boundaries) that could occur in the predictions, and is based on a shortest-path search algorithm. This way, loss minimization enforces connectivity only where it is necessary and finally provides a good localization of the boundaries of the objects in the image. Moreover, according to our research, our Pathloss learns to preserve stronger elongated structure compared to methods without using topology-preserving loss. Training with our topological loss function, our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures: Electron Microscopy and Historical Map.
翻译:获取图像的全球地形图解对于提出其域的准确分割至关重要。 但是, 大部分现有分区方法并不保存给定输入的初始地形图, 这对许多下游基于对象的任务有害。 对于大多数地方尺度上都使用的深层学习模型来说, 这一点更为正确。 在本文中, 我们提出一种新的保存深度图像图解的方法, 这种方法依赖于新的渗漏损失: 路由。 我们的方法是 BALos [ 1] 的延伸, 我们希望在 BALos[ 1 中改进渗漏探测, 以更好地恢复图像分割的近距离属性。 这一损失使我们能够正确定位和固定在预测中可能出现的关键点( 边界渗漏), 并基于最短路径搜索算法。 这样, 损失最小化可以在必要时加强连接, 并最终为图像中对象的边界提供一个良好的本地化。 此外, 根据我们的研究, 我们的路径图解学学会在不使用表层保存损失的方法上保持更坚固的宽度结构。 这一损失让我们能够正确定位和固定在预测中可能发生的临界点( 边界上的渗漏), 并且以最短的方法代表了我们的方法外的地形图解方法。