Have you ever thought that you can be an intelligent painter? This means that you can paint a picture with a few expected objects in mind, or with a desirable scene. This is different from normal inpainting approaches for which the location of specific objects cannot be determined. In this paper, we present an intelligent painter that generate a person's imaginary scene in one go, given explicit hints. We propose a resampling strategy for Denoising Diffusion Probabilistic Model (DDPM) to intelligently compose harmonized scenery images by injecting explicit landmark inputs at specific locations. By exploiting the diffusion property, we resample efficiently to produce realistic images. Experimental results show that our resampling method favors the semantic meaning of the generated output efficiently and generate less blurry output. Quantitative analysis of image quality assessment shows that our method produces higher perceptual quality images compared with the state-of-the-art methods.
翻译:你有没有想过你可以成为一个聪明的画家? 这意味着你可以用一些预期对象来画一张图片, 或者用一个合适的场景。 这与通常的油漆方法不同, 具体对象的位置无法确定。 在本文中, 我们提出一个智能画家, 在一个方向上产生一个人的想象场景, 给出明确的提示 。 我们为 Denoising Difmissulation 概率模型( DDPM) 提出了一个重现策略, 通过在特定地点输入明确的标志性输入, 来明智地制作统一的场景图像 。 通过利用扩散属性, 我们高效地复制产生现实的图像。 实验结果显示, 我们的重新标本方法有利于生成输出的语义含义, 并产生较少模糊的输出。 对图像质量评估的定量分析显示, 我们的方法比状态的图像产生更高感知质量的图像 。