The fidelity of Generative Adversarial Networks (GAN) inversion is impeded by Out-Of-Domain (OOD) areas (e.g., background, accessories) in the image. Detecting the OOD areas beyond the generation ability of the pretrained model and blending these regions with the input image can enhance fidelity. The ``invertibility mask" figures out these OOD areas, and existing methods predict the mask with the reconstruction error. However, the estimated mask is usually inaccurate due to the influence of the reconstruction error in the In-Domain (ID) area. In this paper, we propose a novel framework that enhances the fidelity of human face inversion by designing a new module to decompose the input images to ID and OOD partitions with invertibility masks. Unlike previous works, our invertibility detector is simultaneously learned with a spatial alignment module. We iteratively align the generated features to the input geometry and reduce the reconstruction error in the ID regions. Thus, the OOD areas are more distinguishable and can be precisely predicted. Then, we improve the fidelity of our results by blending the OOD areas from the input image with the ID GAN inversion results. Our method produces photo-realistic results for real-world human face image inversion and manipulation. Extensive experiments demonstrate our method's superiority over existing methods in the quality of GAN inversion and attribute manipulation.
翻译:图像中的“ 外在” (OOOD) 地区( 如背景、 附件) 阻碍基因反转的真伪。 检测未经过训练的模型生成能力以外的 OOD 地区, 并将这些地区与输入图像混为一体, 能够增强对等性。 “ 不可视化遮罩” 显示OOOD 地区, 并用现有方法预测掩罩与重建错误。 然而, 估计蒙面通常不准确, 原因是In- Domain( ID) 地区重建错误的影响。 在本文中, 我们提出了一个新的框架, 通过设计一个新的模块, 将输入图像分解到 ID 和 OOOD 分区, 并将这些图像与不可逆性掩罩混在一起, 我们的可视性探测器与空间调整模块同时学习。 我们反复将生成的特征与输入的几何测量, 并减少ID 地区的重建错误。 因此, OOD 地区更能辨别, 并且可以准确预测人类面貌的正本性反向反向。 我们的图像转换结果的精确性, 我们用ODAN 将人类的图像转换方式与我们的真实性数据转换。