Generative adversarial networks (GANs) are so complex that the existing learning theories do not provide a satisfactory explanation for why GANs have great success in practice. The same situation also remains largely open for deep neural networks. To fill this gap, we introduce a Lipschitz theory to analyze generalization. We demonstrate its simplicity by analyzing generalization and consistency of overparameterized neural networks. We then use this theory to derive Lipschitz-based generalization bounds for GANs. Our bounds show that penalizing the Lipschitz constant of the GAN loss can improve generalization. This result answers the long mystery of why the popular use of Lipschitz constraint for GANs often leads to great success, empirically without a solid theory. Finally but surprisingly, we show that, when using Dropout or spectral normalization, both \emph{truly deep} neural networks and GANs can generalize well without the curse of dimensionality.
翻译:生成的对抗性网络(GANs)如此复杂,以致现有的学习理论无法令人满意地解释GANs在实践中取得巨大成功的原因。同样的情况对深层神经网络来说也仍然基本开放。为了填补这一空白,我们引入了利普施茨理论来分析一般化。我们通过分析超分度神经网络的概括性和一致性来展示其简单性。然后我们用这个理论来推导基于利普施茨的GANs一般化界限。我们的界限表明,惩罚Lipschitz恒定的GAN损失可以改善一般化。这一结果解开了人们为什么普遍使用Lipschitz限制GANs往往在经验上在没有扎实理论的情况下带来巨大成功的长期谜题。最后但令人惊讶的是,我们表明,在使用抛石或光谱常规化时,使用光谱化的深度神经网络和GANs都可以在没有维度诅咒的情况下加以概括化。