Generalized approximate message passing (GAMP) is a promising technique for unknown signal reconstruction of generalized linear models (GLM). However, it requires that the transformation matrix has independent and identically distributed (IID) entries. In this context, generalized vector AMP (GVAMP) is proposed for general unitarily-invariant transformation matrices but it has a high-complexity matrix inverse. To this end, we propose a universal generalized memory AMP (GMAMP) framework including the existing orthogonal AMP/VAMP, GVAMP, and MAMP as special instances. Due to the characteristics that local processors are all memory, GMAMP requires stricter orthogonality to guarantee the asymptotic IID Gaussianity and state evolution. To satisfy such orthogonality, local orthogonal memory estimators are established. The GMAMP framework provides a new principle toward building new advanced AMP-type algorithms. As an example, we construct a Bayes-optimal GMAMP (BO-GMAMP), which uses a low-complexity memory linear estimator to suppress the linear interference, and thus its complexity is comparable to GAMP. Furthermore, we prove that for unitarily-invariant transformation matrices, BO-GMAMP achieves the replica minimum (i.e., Bayes-optimal) MSE if it has a unique fixed point.


翻译:通用近似信息传递(GAMP)是通用线性模型(GLM)的未知信号重建(GGLM)的一种有希望的技术。然而,它要求变异矩阵具有独立和相同分布(IID)条目的特性。在这方面,为一般的单一变化性变异矩阵提议通用矢量AMP(GVAMP),但有一个高复杂度矩阵。为此,我们提议了一个通用记忆AMP(GMAMP)框架(GMAMMP),包括现有的正方形 AMP/VAMP、GVAMMP和MAMP(MAMP),作为特例。由于当地处理器是所有记忆的特性,GMAMP需要更加严格或高度分布,以保障无调节性 IID 高调和状态演变。为了满足这种或正数性变异性、局部或多度的内存估计值矩阵,我们提出了一个新的原则来建立新的高级的高级AMP型算法。举例说,我们建造了一个BA-opres-optial GAMP(O-GMAMP),它使用低相相对比性点的I-SIMMMA IMMA IMP-S-imal-I) IMPIC-S-S-SILIRC-C-S-S-ILID-S-S-C-S-S-S-ID-S-I-I-S-S-S-S-S-S-S-I-I-I-I-I-I-I-S-S-S-C-C-C-C-C-C-C-C-ID-ID-I-C-I-ID-ID-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-C-C-C-C-C-ID-ID-C-C-IB-I-I-IB-I-I-I-I-I-I-I-I-IMA-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
61+阅读 · 2020年3月4日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年10月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年10月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员