Generalized approximate message passing (GAMP) is a promising technique for unknown signal reconstruction of generalized linear models (GLM). However, it requires that the transformation matrix has independent and identically distributed (IID) entries. In this context, generalized vector AMP (GVAMP) is proposed for general unitarily-invariant transformation matrices but it has a high-complexity matrix inverse. To this end, we propose a universal generalized memory AMP (GMAMP) framework including the existing orthogonal AMP/VAMP, GVAMP, and MAMP as special instances. Due to the characteristics that local processors are all memory, GMAMP requires stricter orthogonality to guarantee the asymptotic IID Gaussianity and state evolution. To satisfy such orthogonality, local orthogonal memory estimators are established. The GMAMP framework provides a new principle toward building new advanced AMP-type algorithms. As an example, we construct a Bayes-optimal GMAMP (BO-GMAMP), which uses a low-complexity memory linear estimator to suppress the linear interference, and thus its complexity is comparable to GAMP. Furthermore, we prove that for unitarily-invariant transformation matrices, BO-GMAMP achieves the replica minimum (i.e., Bayes-optimal) MSE if it has a unique fixed point.
翻译:通用近似信息传递(GAMP)是通用线性模型(GLM)的未知信号重建(GGLM)的一种有希望的技术。然而,它要求变异矩阵具有独立和相同分布(IID)条目的特性。在这方面,为一般的单一变化性变异矩阵提议通用矢量AMP(GVAMP),但有一个高复杂度矩阵。为此,我们提议了一个通用记忆AMP(GMAMP)框架(GMAMMP),包括现有的正方形 AMP/VAMP、GVAMMP和MAMP(MAMP),作为特例。由于当地处理器是所有记忆的特性,GMAMP需要更加严格或高度分布,以保障无调节性 IID 高调和状态演变。为了满足这种或正数性变异性、局部或多度的内存估计值矩阵,我们提出了一个新的原则来建立新的高级的高级AMP型算法。举例说,我们建造了一个BA-opres-optial GAMP(O-GMAMP),它使用低相相对比性点的I-SIMMMA IMMA IMP-S-imal-I) IMPIC-S-S-SILIRC-C-S-S-ILID-S-S-C-S-S-S-ID-S-I-I-S-S-S-S-S-S-S-I-I-I-I-I-I-I-S-S-S-C-C-C-C-C-C-C-C-ID-ID-I-C-I-ID-ID-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-C-C-C-C-C-ID-ID-C-C-IB-I-I-IB-I-I-I-I-I-I-I-I-IMA-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I