Pretrained text encoders, such as BERT, have been applied increasingly in various natural language processing (NLP) tasks, and have recently demonstrated significant performance gains. However, recent studies have demonstrated the existence of social bias in these pretrained NLP models. Although prior works have made progress on word-level debiasing, improved sentence-level fairness of pretrained encoders still lacks exploration. In this paper, we proposed the first neural debiasing method for a pretrained sentence encoder, which transforms the pretrained encoder outputs into debiased representations via a fair filter (FairFil) network. To learn the FairFil, we introduce a contrastive learning framework that not only minimizes the correlation between filtered embeddings and bias words but also preserves rich semantic information of the original sentences. On real-world datasets, our FairFil effectively reduces the bias degree of pretrained text encoders, while continuously showing desirable performance on downstream tasks. Moreover, our post-hoc method does not require any retraining of the text encoders, further enlarging FairFil's application space.


翻译:在各种自然语言处理(NLP)任务中,如BERT等经过事先训练的文本编码器越来越多地应用到各种自然语言处理(NLP)任务中,并且最近表现出了显著的绩效成果。然而,最近的研究表明,这些经过训练的NLP模型中存在着社会偏见。虽然先前的工作在字级贬低方面取得了进展,但经过训练的编码器在判刑方面的更公平程度仍然缺乏探索。在本文件中,我们提出了为事先训练的文本编码器采用的第一个神经去偏见的方法,该方法通过一个公平的过滤器(FairFil)网络将经过训练的编码器输出转化为失偏颇的表达方式。为了学习FairFil,我们引入了一个对比式学习框架,不仅尽量减少过滤的嵌入和偏向词之间的相互关系,而且还保留了原有句中的丰富的语义信息。在现实世界数据集中,我们的FairFil有效地降低了经过训练的文本编码器的偏向偏向性程度,同时不断显示下游任务的适当性。此外,我们的后热法方法并不要求重新培训的文字编码器,进一步扩大FairFirFil的应用空间应用。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员