We consider the decoding of rank metric codes assuming the error matrix is symmetric. We prove two results. First, for rates $<1/2$ there exists a broad family of rank metric codes for which any symmetric error pattern, even of maximal rank can be corrected. Moreover, the corresponding family of decodable codes includes Gabidulin codes of rate $<1/2$. Second, for rates $>1/2$, we propose a decoder for Gabidulin codes correcting symmetric errors of rank up to $n-k$. The two mentioned decoders are deterministic and worst case.


翻译:我们考虑在错误矩阵对称的情况下解码秩度量码。我们证明了两个结果。首先,对于速率$<$0.5,存在一大类秩度量码,其中任何对称错误模式,即使是最大秩也可以被纠正。此外,相应的解码码系包括速率小于0.5的Gabidulin码。其次,对于速率$>$0.5的Gabidulin码,我们提出了一种解码器,可纠正秩高达$n-k$的对称错误。这两种解码器都是确定性的,最坏情况下的。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
45+阅读 · 2020年9月3日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
专知会员服务
162+阅读 · 2020年1月16日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【干货】Lossless Triplet Loss: 一种高效的Siamese网络损失函数
机器学习研究会
29+阅读 · 2018年2月21日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员