We consider the decoding of rank metric codes assuming the error matrix is symmetric. We prove two results. First, for rates $<1/2$ there exists a broad family of rank metric codes for which any symmetric error pattern, even of maximal rank can be corrected. Moreover, the corresponding family of decodable codes includes Gabidulin codes of rate $<1/2$. Second, for rates $>1/2$, we propose a decoder for Gabidulin codes correcting symmetric errors of rank up to $n-k$. The two mentioned decoders are deterministic and worst case.
翻译:我们考虑在错误矩阵对称的情况下解码秩度量码。我们证明了两个结果。首先,对于速率$<$0.5,存在一大类秩度量码,其中任何对称错误模式,即使是最大秩也可以被纠正。此外,相应的解码码系包括速率小于0.5的Gabidulin码。其次,对于速率$>$0.5的Gabidulin码,我们提出了一种解码器,可纠正秩高达$n-k$的对称错误。这两种解码器都是确定性的,最坏情况下的。