Maximally Recoverable Local Reconstruction Codes (LRCs) are codes designed for distributed storage to provide maximum resilience to failures for a given amount of storage redundancy and locality. An $(n,r,h,a,g)$-MR LRC has $n$ coordinates divided into $g$ local groups of size $r=n/g$, where each local group has `$a$' local parity checks and there are an additional `$h$' global parity checks. Such a code can correct `$a$' erasures in each local group and any $h$ additional erasures. Constructions of MR LRCs over small fields is desirable since field size determines the encoding and decoding efficiency in practice. In this work, we give a new construction of $(n,r,h,a,g)$-MR-LRCs over fields of size $q=O(n)^{h+(g-1)a-\lceil h/g\rceil}$ which generalizes a construction of Hu and Yekhanin (ISIT 2016). This improves upon state of the art when there are a small number of local groups, which is true in practical deployments of MR LRCs.
翻译:暂无翻译