Global demand for donated blood far exceeds supply, and unmet need is greatest in low- and middle-income countries; experts suggest that large-scale coordination is necessary to alleviate demand. Using the Facebook Blood Donation tool, we conduct the first large-scale algorithmic matching of blood donors with donation opportunities. While measuring actual donation rates remains a challenge, we measure donor action (e.g., making a donation appointment) as a proxy for actual donation. We develop automated policies for matching patients and donors, based on an online matching model. We provide theoretical guarantees for these policies, both regarding the number of expected donations and the equitable treatment of blood recipients. In simulations, a simple matching strategy increases the number of donations by 5-10%; a pilot experiment with real donors shows a 5% relative increase in donor action rate (from 3.7% to 3.9%). When scaled to the global Blood Donation tool user base, this corresponds to an increase of around one hundred thousand users taking action toward donation. Further, observing donor action on a social network can shed light onto donor behavior and response to incentives. Our initial findings align with several observations made in the medical and social science literature regarding donor behavior.
翻译:对捐血的全球需求远远超过供应,在中低收入国家,未满足的需求最大;专家认为,大规模协调对于缓解需求是必要的。使用Facebook捐血工具,我们首次对捐血者进行大规模算法匹配和捐赠机会。虽然衡量实际捐血率仍是一项挑战,但衡量实际捐血率时,我们用实际捐血率作为实际捐血的代金。我们根据在线匹配模式制定了匹配病人和捐血者的自动政策。我们为这些政策提供了理论保障,既包括预期捐血的数量,也包括对血接受者的公平待遇。在模拟中,简单的匹配战略将捐赠数量增加了5-10%;与实际捐血者进行的试点实验显示,捐赠者的行动率相对提高了5%(从3.7%增至3.9% ) 。 在全球捐血工具用户基础上,这相当于增加大约10万个用户为捐血采取行动。此外,观察捐赠者在社会网络上的行动可以说明捐赠者的行为和对奖励措施的反应。我们的初步发现与医学和社会科学文献中关于捐赠者行为的一些观察一致。