This paper provides a novel framework that learns canonical embeddings for non-rigid shape matching. In contrast to prior work in this direction, our framework is trained end-to-end and thus avoids instabilities and constraints associated with the commonly-used Laplace-Beltrami basis or sequential optimization schemes. On multiple datasets, we demonstrate that learning self symmetry maps with a deep functional map projects 3D shapes into a low dimensional canonical embedding that facilitates non-rigid shape correspondence via a simple nearest neighbor search. Our framework outperforms multiple recent learning based methods on FAUST and SHREC benchmarks while being computationally cheaper, data-efficient, and robust.
翻译:本文提供了一个新的框架, 学习非硬质形状匹配的恒星嵌入。 与先前朝此方向开展的工作不同, 我们的框架是经过培训的端到端, 从而避免了与常用的Laplace- Beltrami基基基或相继优化计划相关的不稳定和制约。 在多个数据集中, 我们证明学习的自我对称图与深功能地图项目 3D 形成一个低维的恒星嵌入, 通过简单的近邻搜索为非硬质形状通信提供便利 。 我们的框架优于基于FAUST 和 SHREC 基准的多项最新学习方法, 而同时计算成本更低、数据效率和强健。