We present a multi-stage 3D computer-aided detection and diagnosis (CAD) model for automated localization of clinically significant prostate cancer (csPCa) in bi-parametric MR imaging (bpMRI). Deep attention mechanisms drive its detection network, targeting salient structures and highly discriminative feature dimensions across multiple resolutions. Its goal is to accurately identify csPCa lesions from indolent cancer and the wide range of benign pathology that can afflict the prostate gland. Simultaneously, a decoupled residual classifier is used to achieve consistent false positive reduction, without sacrificing high sensitivity or computational efficiency. In order to guide model generalization with domain-specific clinical knowledge, a probabilistic anatomical prior is used to encode the spatial prevalence and zonal distinction of csPCa. Using a large dataset of 1950 prostate bpMRI paired with radiologically-estimated annotations, we hypothesize that such CNN-based models can be trained to detect biopsy-confirmed malignancies in an independent cohort. For 486 institutional testing scans, the 3D CAD system achieves 83.69$\pm$5.22% and 93.19$\pm$2.96% detection sensitivity at 0.50 and 1.46 false positive(s) per patient, respectively, with 0.882$\pm$0.030 AUROC in patient-based diagnosis $-$significantly outperforming four state-of-the-art baseline architectures (U-SEResNet, UNet++, nnU-Net, Attention U-Net) from recent literature. For 296 external biopsy-confirmed testing scans, the ensembled CAD system shares moderate agreement with a consensus of expert radiologists (76.69%; $kappa$ $=$ 0.51$\pm$0.04) and independent pathologists (81.08%; $kappa$ $=$ 0.56$\pm$0.06); demonstrating strong generalization to histologically-confirmed csPCa diagnosis.


翻译:我们展示了一个多阶段 3D 计算机辅助检测和诊断(CAD) 模型, 用于在双对称的MR成像(bpMRI)中将临床重要的前列腺癌(csPCa)自动本地化。 深度关注机制驱动着它的检测网络,针对突出的结构以及多种分辨率的高度歧视性特征。 它的目标是精确地辨别CsPCa 和一系列可以影响前列腺的良性病理。 同时, 正在使用一个分解的中位分解的中位分解分解器来实现一致的假正值降值, 但不牺牲高度敏感度或计算效率。 为了以特定领域临床知识来指导模型的通用化, 使用了一种概率性解析网络化的网络化解析(csPCa), 以美元计价值为美元 。 高价值的中位数 0. 0. 0. 0. 08 中位数, 以美元为美元 美元 。 CAAADIDE 的直压性测试系统, 以正数为正数 0.69= 。

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年5月23日
【CCL2020】基于深度学习的实体关系抽取研究综述
专知会员服务
52+阅读 · 2020年11月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
外泌体TRIM3可作为胃癌诊断和治疗的新标记物
外泌体之家
5+阅读 · 2018年7月23日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员