Computational experiments are exploited in finding a well-designed processing path to optimize material structures for desired properties. This requires understanding the interplay between the processing-(micro)structure-property linkages using a multi-scale approach that connects the macro-scale (process parameters) to meso (homogenized properties) and micro (crystallographic texture) scales. Due to the nature of the problem's multi-scale modeling setup, possible processing path choices could grow exponentially as the decision tree becomes deeper, and the traditional simulators' speed reaches a critical computational threshold. To lessen the computational burden for predicting microstructural evolution under given loading conditions, we develop a neural network (NN)-based method with physics-infused constraints. The NN aims to learn the evolution of microstructures under each elementary process. Our method is effective and robust in finding optimal processing paths. In this study, our NN-based method is applied to maximize the homogenized stiffness of a Copper microstructure, and it is found to be 686 times faster while achieving 0.053% error in the resulting homogenized stiffness compared to the traditional finite element simulator on a 10-process experiment.
翻译:计算实验被应用于寻找优化具有期望特性材料结构的良好设计加工路径。这需要使用连接宏观尺度(加工参数)到中等(均质化特性)和微观(晶体学纹理)尺度的多尺度方法来理解处理-(微)结构-特性联系的相互作用。由于问题的多尺度建模设置,可能的处理路径选择会随着决策树的加深而呈指数级增长,而传统模拟器的速度将达到临界的计算负担。为了减轻在给定载荷条件下预测微结构演变的计算负担,我们开发了一种基于物理约束的神经网络(NN)方法。NN旨在学习每个基本过程下微结构的演变。我们的方法在寻找最优加工路径方面具有高效性和鲁棒性。在这项研究中,我们的基于NN的方法被应用于最大化铜微结构的均质化刚度,发现其速度比10个处理实验上的传统有限元模拟器快686倍,且其结果均质化刚度的误差为0.053%。