Federated learning (FL) emerged as a promising learning paradigm to enable a multitude of participants to construct a joint ML model without exposing their private training data. Existing FL designs have been shown to exhibit vulnerabilities which can be exploited by adversaries both within and outside of the system to compromise data privacy. However, most current works conduct attacks by leveraging gradients on a small batch of data, which is less practical in FL. In this work, we consider a more practical and interesting scenario in which participants share their epoch-averaged gradients (share gradients after at least 1 epoch of local training) rather than per-example or small batch-averaged gradients as in previous works. We perform the first systematic evaluation of attribute reconstruction attack (ARA) launched by the malicious server in the FL system, and empirically demonstrate that the shared epoch-averaged local model gradients can reveal sensitive attributes of local training data of any victim participant. To achieve this goal, we develop a more effective and efficient gradient matching based method called cos-matching to reconstruct the training data attributes. We evaluate our attacks on a variety of real-world datasets, scenarios, assumptions. Our experiments show that our proposed method achieves better attribute attack performance than most existing baselines.


翻译:联邦学习(FL)是一个大有希望的学习范例,它使许多参与者能够在不披露其私人培训数据的情况下建立联合 ML模型,成为了有希望的学习范例。现有的 FL设计显示,存在一些弱点,这些弱点可以被系统内外的对手利用,以损害数据隐私。然而,大多数目前的工作是通过利用少量数据中的梯度来利用梯度进行攻击,而FL则不那么实用。在这项工作中,我们考虑一种更加实际和有趣的情景,即参与者可以分享其最差的差值梯度(至少经过1个地方培训之后的差度梯度),而不是像以前的工作那样,每个例或小批量平均梯度。我们对FL系统中恶意服务器发起的属性重建攻击(ARA)进行第一次系统评价,并实证地表明,共同的偏差当地模型梯度可以揭示任何受害者参与者当地培训数据的敏感属性。为实现这一目标,我们开发一种更有效和高效的梯度匹配方法,其基础是连接,以重建培训数据属性。我们评估了各种真实世界性攻击基线,而不是我们提出的业绩假设。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年3月28日
专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Traceback of Data Poisoning Attacks in Neural Networks
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
0+阅读 · 2021年10月8日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年3月28日
专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员