Poisoning attacks on machine learning systems compromise the model performance by deliberately injecting malicious samples in the training dataset to influence the training process. Prior works focus on either availability attacks (i.e., lowering the overall model accuracy) or integrity attacks (i.e., enabling specific instance-based backdoor). In this paper, we advance the adversarial objectives of the availability attacks to a per-class basis, which we refer to as class-oriented poisoning attacks. We demonstrate that the proposed attack is capable of forcing the corrupted model to predict in two specific ways: (i) classify unseen new images to a targeted "supplanter" class, and (ii) misclassify images from a "victim" class while maintaining the classification accuracy on other non-victim classes. To maximize the adversarial effect as well as reduce the computational complexity of poisoned data generation, we propose a gradient-based framework that crafts poisoning images with carefully manipulated feature information for each scenario. Using newly defined metrics at the class level, we demonstrate the effectiveness of the proposed class-oriented poisoning attacks on various models (e.g., LeNet-5, Vgg-9, and ResNet-50) over a wide range of datasets (e.g., MNIST, CIFAR-10, and ImageNet-ILSVRC2012) in an end-to-end training setting.


翻译:对机器学习系统的毒害性攻击通过在培训数据集中故意注射恶意样本来影响培训过程而损害模型性能,故意在培训数据集中注入恶意样本,从而损害模型性能。先前的工作重点是提供攻击(即降低总体模型准确性)或完整性攻击(即使具体实例基于后门)。在本文中,我们将提供攻击的对抗性目标推进到每类的基础上,我们称之为面向阶级的中毒攻击。我们证明拟议的攻击能够迫使腐败模式以两种具体方式预测:(一) 将未见新图像分类为目标的“顶替者”类,以及(二) 将图像从“受害者”类错误分类,同时保持其他非受害者类的分类准确性。为了最大限度地发挥对抗效应,并降低有毒数据生成的计算复杂性,我们提出了一个基于梯度的框架,用精心操纵的每个情景信息来制作中毒图像。我们使用新定义的班级级测量标准,展示了对各种模型(例如,LeNet-5,Vgg-9,和ResNet-50)的拟议面向的中毒性攻击的有效性,同时维持其他非受害者类类类的分类的分类准确性,同时保持其他类别的分类的分类。为了最大限度地生成的图像-MISLA-12,为一种广泛的数据设置一个梯测。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
31+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
IJCAI 2019 提前看 | 神经网络后门攻击、对抗攻击
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
相关资讯
IJCAI 2019 提前看 | 神经网络后门攻击、对抗攻击
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员