This thesis is concerned with deriving planning algorithms for robot manipulators. Manipulation has two effects, the robot has a physical effect on the object, and it also acquires information about the object. This thesis presents algorithms that treat both problems. First, I present an extension of the well-known piano mover's problem where a robot pushing an object must plan its movements as well as those of the object. This requires simultaneous planning in the joint space of the robot and the configuration space of the object, in contrast to the original problem which only requires planning in the latter space. The effects of a robot action on the object configuration are determined by the non-invertible rigid body mechanics. Second, I consider planning under uncertainty and in particular planning for information effects. I consider the case where a robot has to reach and grasp an object under pose uncertainty caused by shape incompleteness. The approach presented in this report is to study and possibly extend a new approach to artificial intelligence (A.I.) which has emerged in the last years in response to the necessity of building intelligent controllers for agents operating in unstructured stochastic environments. Such agents require the ability to learn by interaction with its environment an optimal action-selection behaviour. The main issue is that real-world problems are usually dynamic and unpredictable. Thus, the agent needs to update constantly its current image of the world using its sensors, which provide only a noisy description of the surrounding environment. Although there are different schools of thinking, with their own set of techniques, a brand new direction which unifies many A.I. researches is to formalise such agent/environment interactions as embedded systems with stochastic dynamics.
翻译:与机器人操控器的规划算法相关。 操纵有两个效果, 机器人对物体具有物理效果, 并获得关于该物体的信息。 此论文展示了处理这两个问题的算法。 首先, 我展示了众所周知的钢琴移动器问题的延伸, 机器人推动物体时必须规划物体的移动以及物体的移动。 这需要在机器人的联合空间和物体的配置空间同时进行规划, 而与最初的问题相比, 最初的问题只需要在后者的空间里进行规划。 机器人动作对物体配置的影响是由不可忽略的僵硬体力力决定的。 其次, 我考虑在不确定性下进行规划, 特别是规划信息效应。 我考虑的是机器人必须接触和抓住物体的问题, 由形状不完善的形状造成不确定性。 本报告所述的方法是研究, 并可能扩展人工智能智能( A. I. ) 的新的方法, 而在过去几年里, 需要建立智能控制器, 在结构不固定的周围环境环境中操作的代理人, 其真实的动作需要不断更新的动作 。 这种动力的动作需要不断更新的动作, 以其真实的动作的动作的动作, 以不断变化的动作 的动作的动作 。 因此, 它的动作需要不断的动作的动作的动作的动作的动作 的动作需要不断的动作的动作的动作的动作 向 的动作的动作的动作的动作 。 的动作的动作的动作的动作的动作的动作的动作的动作的动作的动作 。 的动作的动作的动作的动作 。