This paper deals with the complexity of the problem of computing a pure Nash equilibrium for discrete preference games and network coordination games beyond $O(\log n)$-treewidth and tree metric spaces. First, we estimate the number of iterations of the best response dynamics for a discrete preference game on a discrete metric space with at least three strategies. Second, we present a sufficient condition that we have a polynomial-time algorithm to find a pure Nash equilibrium for a discrete preference game on a grid graph. Finally, we discuss the complexity of finding a pure Nash equilibrium for a two-strategic network coordination game whose cost functions satisfy submodularity. In this case, if every cost function is symmetric, the games are polynomial-time reducible to a discrete preference game on a path metric space.
翻译:本文论述为离散偏好游戏和网络协调游戏计算纯纳什平衡问题的复杂性,超过$O(log n) n) $- treewidth 和树度空间。 首先,我们估算离散偏好游戏的最佳响应动态的迭代数,该游戏至少有三种战略。 其次,我们提出了一个充分的条件,即我们有一个多元时间算法,可以找到纯纳什平衡,用于网格图上的离散偏好游戏。 最后,我们讨论了为两战略网络协调游戏寻找纯纳什平衡的复杂性,其成本功能满足亚模式性。 在这种情况下,如果每个成本函数都是对称的,那么游戏是多米时间,可以在路径矩阵空间上复制到离散偏爱游戏。