Parity games are positionally determined. This is a fundamental and classical result. In 2010, Calude et al. showed a breakthrough result for finite parity games: the winning regions and their positional winning strategies can be computed in quasi-polynomial time. In the present paper we give a self-contained and detailed proofs for both results. The results in this paper are not meant to be original. The positional determinacy result is shown for possibly infinite parity games using the ideas of Zielonka which he published in 1998. In order to show quasi-polynomial time, we follow Lehtinen's register games, which she introduced in 2018. Although the time complexity of Lehtinen's algorithm is not optimal, register games are conceptually simple and interesting in their own right. Various of our proofs are either new or simplifications of the original proofs. The topics in this paper include the definition and the computation of optimal attractors for reachability games, too.
翻译:对等游戏是定位决定的。 这是一个基本的经典结果。 2010年, Calude 等人展示了有限均等游戏的突破性结果: 获胜区域及其定位获胜策略可以在准极化时间里计算出来。 在本文件中,我们给出了两种结果的自足和详细的证明。 本文的结果不是原始的。 定位确定性结果显示为可能无限的对等游戏, 使用Zielonka1998年出版的Zielonka的理念。 为了显示准极化时间, 我们遵循了Lehtinen的注册游戏, 这是她于2018年推出的。 虽然Lehtinen的算法在时间上的复杂性并不理想, 但注册游戏在概念上是简单而有趣的。 我们的各种证明要么是新颖的,要么是原始证据的简化。 本文的题目还包括对可达性游戏的最佳吸引者的定义和计算。