In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis.
翻译:在本条中,我们为定向环绕图(DAG)提出了一个新的假设测试方法。虽然DAG估算方法种类繁多,但DAG推论方法相对较少。此外,现有方法往往将某些特定的模型结构,如线性模型或添加模型,并假定独立的数据观测。我们提议的测试使随机变量之间的关联非线性,数据取决于时间。我们根据一些高度灵活的神经网络学习者来建立测试。我们建立了测试的无药可治的保证,同时允许每个对象的主体或时间点的数量有差异至无限性。我们通过模拟和脑连通网络分析来展示测试的有效性。