This paper is concerned with enhancing data utility in the privacy watchdog method for attaining information-theoretic privacy. For a specific privacy constraint, the watchdog method filters out the high-risk data symbols through applying a uniform data regulation scheme, e.g., merging all high-risk symbols together. While this method entirely trades the symbols resolution off for privacy, we show that the data utility can be greatly improved by partitioning the high-risk symbols set and individually privatizing each subset. We further propose an agglomerative merging algorithm that finds a suitable partition of high-risk symbols: it starts with a singleton high-risk symbol, which is iteratively fused with others until the resulting subsets are private.~Numerical simulations demonstrate the efficacy of this algorithm in privately achieving higher utilities in the watchdog scheme.
翻译:本文涉及加强隐私监控方法中的数据效用以获得信息理论隐私权。 对于具体的隐私限制,监督方法通过应用统一的数据监管办法过滤高风险数据符号,例如将所有高风险符号合并在一起。虽然这种方法完全将符号分辨率交换为隐私,但我们表明,通过分割高风险符号集成和将每个子集单独私有化,数据效用可以大为改善。我们进一步提议一种聚合式合并算法,找到高风险符号的适当分隔:它从一个单吨高风险符号开始,与其他符号迭接,直到由此产生的子集是私有的。~ Numerical模拟显示,这种算法在私自实现监督计划较高公用事业方面的效力。