In this paper, we focus on decoding nonbinary low-density parity-check (LDPC) codes in Galois fields of characteristic two via the proximal alternating direction method of multipliers (proximal-ADMM). By exploiting Flanagan/Constant-Weighting embedding techniques and the decomposition technique based on three-variables parity-check equations, two efficient proximal-ADMM decoders for nonbinary LDPC codes are proposed. We show that both of them are theoretically guaranteed convergent to some stationary point of the decoding model and either of their computational complexities in each proximal-ADMM iteration scales linearly with LDPC code's length and the size of the considered Galois field. Moreover, the decoder based on the Constant-Weight embedding technique satisfies the favorable property of codeword symmetry. Simulation results demonstrate their effectiveness in comparison with state-of-the-art LDPC decoders.
翻译:在本文中,我们侧重于通过倍增效应(Proximal-ADMM)的准交替方向法(PROXI-ADMM)解码加罗伊斯域特性二的非二元低密度对等检查(LDPC)编码。通过利用Flanagan/Constant-weight嵌入技术和基于三种可变等同检查方程式的分解技术,我们提出了两种有效的非二元LDPC编码的高效准亚倍-ADMM解码器。我们显示,这两种编码在理论上都是有保证的,与解码模型的某些固定点相融合,以及它们在每个准氧化值-ADMM(ADM)递升尺度上具有计算复杂性的线性与LDPC代码长度和所考虑的加罗瓦域的大小相连接。此外,基于常数-Wight嵌入技术的分解码器还满足了非二元对称法的有利属性。模拟结果表明它们与最新LDPC解算器的特性相比是有效的。