Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex grammar and semantics constraints, the adversarial example generation techniques in other domains are hardly applicable. Moreover, the adversarial example generation techniques specific to deep code models still suffer from unsatisfactory effectiveness due to the enormous ingredient search space. In this work, we propose a novel adversarial example generation technique (i.e., CODA) for testing deep code models. Its key idea is to use code differences between the target input (i.e., a given code snippet as the model input) and reference inputs (i.e., the inputs that have small code differences but different prediction results with the target input) to guide the generation of adversarial examples. It considers both structure differences and identifier differences to preserve the original semantics. Hence, the ingredient search space can be largely reduced as the one constituted by the two kinds of code differences, and thus the testing process can be improved by designing and guiding corresponding equivalent structure transformations and identifier renaming transformations. Our experiments on 15 deep code models demonstrate the effectiveness and efficiency of CODA, the naturalness of its generated examples, and its capability of enhancing model robustness after adversarial fine-tuning. For example, CODA reveals 88.05% and 72.51% more faults in models than the state-of-the-art techniques (i.e., CARROT and ALERT) on average, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月9日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员