In this paper, we study a non-stationary stochastic bandit problem, which generalizes the switching bandit problem. On top of the switching bandit problem (\textbf{Case a}), we are interested in three concrete examples: (\textbf{b}) the means of the arms are local polynomials, (\textbf{c}) the means of the arms are locally smooth, and (\textbf{d}) the gaps of the arms have a bounded number of inflexion points and where the highest arm mean cannot vary too much in a short range. These three settings are very different, but have in common the following: (i) the number of similarly-sized level sets of the logarithm of the gaps can be controlled, and (ii) the highest mean has a limited number of abrupt changes, and otherwise has limited variations. We propose a single algorithm in this general setting, that in particular solves in an efficient and unified way the four problems (a)-(d) mentioned.


翻译:在本文中,我们研究了一个非静止的土匪问题,它概括了交换土匪问题。除了交换土匪问题(\ textbf{Case a})之外,我们感兴趣的有三个具体例子:(\ textbf{b}) 武器的手段是局部的多面性,(\ textbf{c}) 武器的手段是局部平稳的,以及(\ textbf{d}) 手臂的缺口有一定数量的伸缩点,而且最高的手臂平均值在短距离内变化不会太大。这三个设置非常不同,但有以下共同点:(一) 差距对数的大小相似的对数可以控制,以及(二) 最高平均值的突变数有限,其他的变数也有限。我们在这个总体环境中提出了一个单一的算法,特别是以有效和统一的方式解决所提到的四个问题(a-(d))。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员