We introduce the concept of a rank saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $s_{q^m/q}(k,\rho)$, which is the minimum $\mathbb{F}_q$-dimension of a $q$-system in $\mathbb{F}_{q^m}^k$ which is rank $\rho$-saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $s_{q^m/q}(k,\rho)$ and evaluate it for certain values of $k$ and $\rho$. We give constructions of rank $\rho$-saturating systems suggested from geometry.
翻译:我们引入了等级饱和系统的概念,并将它的对应性与给定覆盖半径的等级代码相提并论。我们考虑了找到美元(k,rho)值(k,rho)的问题,这是$(mathbb{F ⁇ q$-dimenion)的最小值,即美元($)系统的美元(mathbb{F ⁇ q ⁇ mäk$),这是美元(rho$-饱和)的等级。这相当于等级指标的涵盖问题。我们从美元(k,\rho)获得上下限值(k,rho),并按一定值(k,k,k,rho)来评估。我们从几何学学中建议了美元(rho$)饱和系统。