Autonomous Systems (AS) are increasingly proposed, or used, in Safety Critical (SC) applications. Many such systems make use of sophisticated sensor suites and processing to provide scene understanding which informs the AS' decision-making. The sensor processing typically makes use of Machine Learning (ML) and has to work in challenging environments, further the ML-algorithms have known limitations,e.g., the possibility of false-negatives or false-positives in object classification. The well-established safety-analysis methods developed for conventional SC systems are not well-matched to AS, ML, or the sensing systems used by AS. This paper proposes an adaptation of well-established safety-analysis methods to address the specifics of perception-systems for AS, including addressing environmental effects and the potential failure-modes of ML, and provides a rationale for choosing particular sets of guidewords, or prompts, for safety-analysis. It goes on to show how the results of the analysis can be used to inform the design and verification of the AS and illustrates the new method by presenting a partial analysis of a road vehicle. Illustrations in the paper are primarily based on optical sensing, however the paper discusses the applicability of the method to other sensing modalities and its role in a wider safety process addressing the overall capabilities of AS.
翻译:许多这类系统使用先进的传感器套件和处理,以提供现场了解,为AS的决策提供依据。传感器处理通常使用机器学习(ML),并且必须在具有挑战性的环境中工作。传感器处理通常使用机器学习(ML),此外,ML-algorithms具有已知的局限性,例如,在物体分类中出现假否定或假阳性的可能性。为常规SC系统开发的完善的安全分析方法与AS、ML或AS使用的遥感系统不完全匹配。本文建议调整完善的安全分析方法,以处理AS的感知系统的具体特点,包括处理环境影响和ML的潜在故障模式,并为选择一套特定的指导词或提示来进行安全分析提供了理由。它接着说明了如何利用分析结果来为AS的设计与核查提供信息,并通过对公路系统或AS使用的感测系统进行部分分析来说明新的方法。本文建议调整完善的安全分析方法,以处理AS的感测系统的具体特点,包括处理ML的环境影响和潜在故障模式,并为选择一套特定的指导词或提示词或提示词来进行安全分析提供依据。在更大范围的文件中分析方法中说明其应用能力的新方法。