Subjective cognitive decline (SCD) is a preclinical stage of Alzheimer's disease (AD) which occurs even before mild cognitive impairment (MCI). Progressive SCD will convert to MCI with the potential of further evolving to AD. Therefore, early identification of progressive SCD with neuroimaging techniques (e.g., structural MRI) is of great clinical value for early intervention of AD. However, existing MRI-based machine/deep learning methods usually suffer the small-sample-size problem which poses a great challenge to related neuroimaging analysis. The central question we aim to tackle in this paper is how to leverage related domains (e.g., AD/NC) to assist the progression prediction of SCD. Meanwhile, we are concerned about which brain areas are more closely linked to the identification of progressive SCD. To this end, we propose an attention-guided autoencoder model for efficient cross-domain adaptation which facilitates the knowledge transfer from AD to SCD. The proposed model is composed of four key components: 1) a feature encoding module for learning shared subspace representations of different domains, 2) an attention module for automatically locating discriminative brain regions of interest defined in brain atlases, 3) a decoding module for reconstructing the original input, 4) a classification module for identification of brain diseases. Through joint training of these four modules, domain invariant features can be learned. Meanwhile, the brain disease related regions can be highlighted by the attention mechanism. Extensive experiments on the publicly available ADNI dataset and a private CLAS dataset have demonstrated the effectiveness of the proposed method. The proposed model is straightforward to train and test with only 5-10 seconds on CPUs and is suitable for medical tasks with small datasets.
翻译:即使在轻微认知缺陷(MCI)之前,阿尔茨海默氏病(AD)的认知下降(SCD)就是一个先入为主的阶段,甚至在轻微认知缺陷(MCI)之前就已经出现。 进步的SCD将转换为MCI,有可能进一步演变为AD。 因此,早期识别进步的SCD与神经成像技术(例如结构性MRI)对于AD的早期干预具有极大的临床价值。 然而,现有的基于MRI的机器/深层学习方法通常会遇到小范围的问题,这给相关的神经成像分析带来巨大的挑战。我们在本文件中要解决的中心问题是如何利用相关领域(例如AD/NC)来帮助SCD的进化预测。 同时,我们关注的是哪些大脑领域与神经成像技术(例如结构性MRI)的早期诊断技术(例如结构性MRI)的早期识别技术(例如结构性MRI)有更紧密的联系。 我们建议为高效的跨部适应而引导的自动导导导导导导导导导导导导导器导导导导导模,它只能促进知识模式向SCD的转移。 拟议的模型可以由四个关键构件组成: 1)用于在不同的区域学习小空间上学习共享小空间的子空间的子空间图解的分空间分析,2 用于大脑实验模型的脑部部的大脑的理论化模型的脑部的理论解导导导导导导导导导算。