Concept learning approaches based on refinement operators explore partially ordered solution spaces to compute concepts, which are used as binary classification models for individuals. However, the number of concepts explored by these approaches can easily grow to the millions for complex learning problems. This often leads to impractical runtimes. We propose to alleviate this problem by predicting the length of target concepts before the exploration of the solution space. By these means, we can prune the search space during concept learning. To achieve this goal, we compare four neural architectures and evaluate them on four benchmarks. Our evaluation results suggest that recurrent neural network architectures perform best at concept length prediction with a macro F-measure ranging from 38% to 92%. We then extend the CELOE algorithm--which learns ALC concepts--with our concept length predictor. Our extension yields the algorithm CLIP. In our experiments, CLIP is at least 7.5 times faster than other state-of-the-art concept learning algorithms for ALC--including CELOE--and achieves significant improvements in the F-measure of the concepts learned on 3 out of 4 datasets. For reproducibility, we provide our implementation in the public GitHub repository at https://github.com/ConceptLengthLearner/LearnLengths


翻译:基于完善操作者的概念学习方法基于完善操作者探索部分有序的计算概念的解决方案空间,这些概念被用作个人的二元分类模型。然而,这些方法所探讨的概念数量很容易增长到数百万个复杂学习问题,这往往会导致不切实际的运行时间。我们提议通过在探索解决方案空间之前预测目标概念的长度来缓解这一问题。通过这些手段,我们可以在概念学习过程中利用搜索空间。为了实现这一目标,我们比较了四个神经结构,并根据四个基准对它们进行评估。我们的评价结果表明,经常神经网络结构在概念长度预测方面效果最好,其宏观F措施从38%到92%不等。我们随后扩展了CELOE算法,该算法用我们的概念长度预测器学习ALC概念。我们的扩展产生了CLIP算法。在我们的实验中,CLIP比其他州-包括CLOE-CLOE-和在4个数据集外的3个概念的F-测量方法有显著改进。我们提供了在MACUB/Lcommev/Gicom中执行我们的公共数据库。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning Weakly-Supervised Contrastive Representations
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
31+阅读 · 2020年9月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Learning Weakly-Supervised Contrastive Representations
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
31+阅读 · 2020年9月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员