In this paper, we exploit the effective way to leverage contextual information to improve the speech dereverberation performance in real-world reverberant environments. We propose a temporal-contextual attention approach on the deep neural network (DNN) for environment-aware speech dereverberation, which can adaptively attend to the contextual information. More specifically, a FullBand based Temporal Attention approach (FTA) is proposed, which models the correlations between the fullband information of the context frames. In addition, considering the difference between the attenuation of high frequency bands and low frequency bands (high frequency bands attenuate faster than low frequency bands) in the room impulse response (RIR), we also propose a SubBand based Temporal Attention approach (STA). In order to guide the network to be more aware of the reverberant environments, we jointly optimize the dereverberation network and the reverberation time (RT60) estimator in a multi-task manner. Our experimental results indicate that the proposed method outperforms our previously proposed reverberation-time-aware DNN and the learned attention weights are fully physical consistent. We also report a preliminary yet promising dereverberation and recognition experiment on real test data.
翻译:在本文中,我们利用有效的方式利用背景信息来改善现实世界回旋环境中的言语脱差性能。我们提议对深神经网络采取时间-时间-注意方法,以适应环境意识言语脱差,以适应背景信息。更具体地说,我们提议采用全宽基于时钟注意方法(FTA),以模拟上下文框架全带信息之间的相互关系。此外,考虑到高频波段和低频波段(高频波段的减速速度快于低频波段)在室内脉冲反应中的差异,我们还提议对深神经网络(DNNN)采取基于环境意识言语脱差的注意方法(DNNN)进行时间-时间-注意方法(DNFA)。为了指导网络更加了解反动环境,我们共同以多功能方式优化偏差网络和反动时间(RT60)估计器。我们的实验结果表明,拟议方法比我们先前提议的回调-觉增速波段频率波段速度快过低频波段在室脉冲反应反应反应反应反应反应反应反应反应反应反应反应反应反应反应反应反应反应速度速度快快快快快快快快(RIR)之间的差异,我们还提议采取以以以Sub-BNNNNN和体运动注意的体重度实验性实验性试验报告。我们还充分地研究了对实际认识和体积测测重重度实验性体力的体力试验。