Motivated by testing for pathogenic diseases we consider a new nonadaptive group testing problem for which: (1) positives occur within a burst, capturing the fact that infected test subjects often come in clusters, and (2) that the test outcomes arise from semiquantitative measurements that provide coarse information about the number of positives in any tested group. Our model generalizes prior work on detecting a single burst of positives with classical group testing[1] as well as work on semiquantitative group testing (SQGT)[2]. Specifically, we study the setting where the burst-length $\ell$ is known and the semiquantitative tests provide potentially nonuniform estimates on the number of positives in a test group. The estimates represent the index of a quantization bin containing the (exact) total number of positives, for arbitrary thresholds $\eta_1,\dots,\eta_s$. Interestingly, we show that the minimum number of tests needed for burst identification is essentially only a function of the largest threshold $\eta_s$. In this context, our main result is an order-optimal test scheme that can recover any burst of length $\ell$ using roughly $\frac{\ell}{2\eta_s}+\log_{s+1}(n)$ measurements. This suggests that a large saturation level $\eta_s$ is more important than finely quantized information when dealing with bursts. We also provide results for related modeling assumptions and specialized choices of thresholds.
翻译:摘要:受病原疾病检测的启发,我们考虑一个新的非自适应分组检测问题,其中阳性案例会在一段时间内集中爆发,反映了感染测试对象通常呈簇状分布的事实,而且测试结果来自提供有关任何测试组中阳性数量的粗略信息的半定量测量。我们的模型推广了先前关于使用经典的分组检测来检测单个阳性爆发以及半定量分组检测(SQGT) 双重特性的研究。具体而言,我们研究了一种情况,即假定爆发长度为 $\ell$ 已知,而半定量测试提供可能非均匀的关于测试组的阳性数量的估计。这些估计值表示包含(精确的)阳性总数的量化区间的索引,适用于任意阈值 $\eta_1,\dots,\eta_s$。有趣的是,我们表明,用于爆发识别所需的最小测试次数实际上仅仅是最大阈值 $\eta_s$ 的函数。在这种情况下,我们的主要结果是一种基本最优的测试方案,可以使用大约 $\frac {\ell} {2\eta_s} + \log_{s+1}(n)$ 次测量来恢复任何长度为 $\ell$ 的爆发。这表明,当处理爆发时,大的饱和水平 $\eta_s$ 比精细量化的信息更重要。我们还提供了与相关建模假设和阈值选择相关的结果。