We utilized a 3D nnU-Net model with residual layers supplemented by squeeze and excitation (SE) normalization for tumor segmentation from PET/CT images provided by the Head and Neck Tumor segmentation chal-lenge (HECKTOR). Our proposed loss function incorporates the Unified Fo-cal and Mumford-Shah losses to take the advantage of distribution, region, and boundary-based loss functions. The results of leave-one-out-center-cross-validation performed on different centers showed a segmentation performance of 0.82 average Dice score (DSC) and 3.16 median Hausdorff Distance (HD), and our results on the test set achieved 0.77 DSC and 3.01 HD. Following lesion segmentation, we proposed training a case-control proportional hazard Cox model with an MLP neural net backbone to predict the hazard risk score for each discrete lesion. This hazard risk prediction model (CoxCC) was to be trained on a number of PET/CT radiomic features extracted from the segmented lesions, patient and lesion demographics, and encoder features provided from the penultimate layer of a multi-input 2D PET/CT convolutional neural network tasked with predicting time-to-event for each lesion. A 10-fold cross-validated CoxCC model resulted in a c-index validation score of 0.89, and a c-index score of 0.61 on the HECKTOR challenge test dataset.
翻译:我们利用3D nnU-Net 模型的剩余层,辅之以由头部和颈部截断色带(HECKTOR)提供的PET/CT图像的挤压和刺激(SE)正常化肿瘤分解。我们拟议的损失功能包括统一福卡和Mumford-Shah损失模型,以利用分布、区域和基于边界的损失函数。在不同中心进行的请假一出中点校校校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外分数0.82和3.16Husdorf距离(HD)中位数的分解性功能。我们在测试集中的结果为0.77 DSC和3.01 HDD。在进行损伤分解后,我们提议对立案控制比例危害考模型和MLPP Neford-Shah(C)的神经中校外校外校外校外校外校外校外学预测模型(Cox-CT),从分部、病人和腐变变变变变后计算机网络的每组的CLELEST-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-RO-C-C-C-C-C-C-C-C-C-C-C-C-C-C-SL-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-