In this note we design a cut finite element method for a low order divergence free element applied to a boundary value problem subject to Stokes' equations. For the imposition of Dirichlet boundary conditions we consider either Nitsche's method or a stabilized Lagrange multiplier method. In both cases the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how of the the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence free condition.
翻译:在本说明中,我们设计了一种用于受斯托克斯方程式制约的边界值问题的低顺序差分自由要素的削减有限要素方法。为了强制实施 Dirichlet 边界条件,我们考虑的是尼采的方法或稳定的拉格朗乘数方法。在这两种情况下,速度的正常组成部分都使用一个乘数来限制,与标准的压力近似值不同。大约速度差在整个网格域中是点点零,我们得出了速度和压力的最佳误差估计,其中误差常数与物理域的相互交错、计算网格和压力乘法的规律无关。