This paper develops a general asymptotic theory of local polynomial (LP) regression for spatial data observed at irregularly spaced locations in a sampling region $R_n \subset \mathbb{R}^d$. We adopt a stochastic sampling design that can generate irregularly spaced sampling sites in a flexible manner including both pure increasing and mixed increasing domain frameworks. We first introduce a nonparametric regression model for spatial data defined on $\mathbb{R}^d$ and then establish the asymptotic normality of LP estimators with general order $p \geq 1$. We also propose methods for constructing confidence intervals and establish uniform convergence rates of LP estimators. Our dependence structure conditions on the underlying processes cover a wide class of random fields such as L\'evy-driven continuous autoregressive moving average random fields. As an application of our main results, we discuss a two-sample testing problem for mean functions and their partial derivatives.
翻译:本文为在取样区域非正常间距地点观测的空间数据开发了一个一般的局部多元回归(LP)参数。 我们采用了一种随机抽样设计, 能够以灵活的方式生成不定期间距的取样地点, 包括纯增加和混合增加的域框架。 我们首先为以$mathbb{R ⁇ d$定义的空间数据引入一个非参数回归模型, 然后建立一般顺序为$p\geq 1的LP估计值的无症状常态。 我们还提出了构建信任间隔和确定LP估计值统一趋同率的方法。 我们对基本过程的依赖性结构条件涵盖一系列广泛的随机字段, 如L\'vy驱动的连续自递递性平均随机字段。 作为我们主要结果的应用, 我们讨论对中值函数及其部分衍生物进行两次抽样测试的问题。