Nonparametric mixture models based on the Pitman-Yor process represent a flexible tool for density estimation and clustering. Natural generalization of the popular class of Dirichlet process mixture models, they allow for more robust inference on the number of components characterizing the distribution of the data. We propose a new sampling strategy for such models, named importance conditional sampling (ICS), which combines appealing properties of existing methods, including easy interpretability and a within-iteration parallelizable structure. An extensive simulation study highlights the efficiency of the proposed method which, unlike other conditional samplers, shows stable performances for different specifications of the parameters characterizing the Pitman-Yor process. We further show that the ICS approach can be naturally extended to other classes of computationally demanding models, such as nonparametric mixture models for partially exchangeable data.
翻译:基于Pitman-Yor工艺的非对称混合物模型是密度估计和组群的灵活工具。对流行的Drichlet工艺混合物模型类别进行自然概括化,允许对数据分布特征的成分数量进行更可靠的推论。我们为这类模型提出了新的取样战略,称为重要的有条件抽样(ICS),其中结合了现有方法的吸引力特性,包括易解性和可内联平行结构。一项广泛的模拟研究突出了拟议方法的效率,该方法与其他有条件采样者不同,显示Pitman-Yor工艺不同参数规格的稳定性能。我们进一步表明,ICS方法可以自然扩展到其他计算要求高的模型类别,如用于部分互换数据的非对称混合模型。