Matrix factorization in dual number algebra, a hypercomplex system, has been applied to kinematics, mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-$k$ approximation under a newly defined Froubenius norm in dual complex number system. The CDSVD is also related to the dual Moore-Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate the less computational cost of our proposed CDSVD. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain fMRI data and then identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.
翻译:超复合系统,即双数代数变代数的矩阵要素化(CDSVD)已经应用到运动学、机制和其他领域。我们最近开发了一种方法,利用本文中双基矩阵的单值分解值,确定脑中流动波等随机时态模式。理论上,我们提议对双复杂矩阵进行压缩的双单值分解(CDSVD),配有清晰的表达式,以及其存在的必要和充分条件。此外,根据CDSVD,我们报告在双复杂数字系统中新定义的Froubenius规范下,最佳等级-k$-k$近似的最佳解决方案。CDSVD也与双双摩-enrose 通用反向模式相关。从数量上看,我们与其他可用的算法进行了比较,这表明我们提议的CDSVD的计算成本较低。我们采用模拟时间序列数据和道路监测视频,以展示在空间模糊模式识别中双基质矩阵无限的微量部分的有益效果。最后,我们将这一方法应用于大规模分析结果和当前脑循环数据以及三种分析结果的相互函数。</s>