Systems Theoretic Process Analysis (STPA) is a systematic approach for hazard analysis that has been effective in the safety analysis of systems across industrial sectors from transportation, energy, to national defence. The unstoppable trend of using Machine Learning (ML) in safety-critical systems has led to the pressing need of extending STPA to Learning-Enabled Systems (LESs). However, while work has been carried out over different example systems, without a systematic review, it is unclear how effective and generalisable the extended STPA methods are and, more importantly, if further improvements can be made. To this end, we present our survey on 29 papers selected through a systematic literature search. We summarise and compare relevant research from five perspectives (attributes of concern, object under study, modifications to STPA, derivatives of the analysis, and process modelled as a control loop) to conclude insights. Furthermore, based on the survey results, we identify room for improvement and accordingly introduce a new method named DeepSTPA, which enhances STPA from two aspects that are missing from the state-of-the-art: (i) it explicitly models how the control loop structures are extended to identify hazards from the data-driven development process at every stage of the ML lifecycle; (ii) it models fine-grained functionalities deep into the layer-levels of ML models to detect root causes. We demonstrate DeepSTPA through a case study on an autonomous underwater vehicle (AUV).


翻译:系统理论过程分析(STPA)是一个系统化的危险分析方法,在从运输、能源到国防等工业部门系统的安全分析中行之有效。在安全关键系统中使用机器学习(ML)的不可阻挡趋势导致迫切需要将STPA推广到学习强化系统(LES),然而,虽然在不同实例系统方面开展了工作,但没有进行系统审查,但尚不清楚扩大的STPA方法是否有效和可普遍适用,更重要的是,如果可以进一步改进的话。为此,我们对通过系统文献搜索选定的29份文件进行了调查。我们从五个角度(关注因素、研究对象、对STPA的修改、分析衍生物和以控制循环为模式的程序)对相关研究进行总结和比较,以得出深刻的见解。此外,根据调查结果,我们确定了改进的空间,并因此引入了名为DeepSTPA的新方法,这加强了我们从现状中缺失的两个方面。我们明确地分析了通过系统文献搜索的29份论文。我们从五个角度(关切的原因、正在研究的对象、正在研究的对象、STPA的修改、分析和过程的衍生过程的衍生过程)从M-L的每个控制循环模型到M-BL级的动态模型的深度研究。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员