项目名称: 贵金属-半导体一维纳米线中表面等离子体-激子耦合效应研究

项目编号: No.51472165

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 苏轶坤

作者单位: 深圳大学

项目金额: 83万元

中文摘要: 基于纳米金属表面等离子体效应和半导体光催化效应的贵金属-半导体异质结是一种新型的可见光光催化材料,具有在可见光区呈现出光催化活性的优异性能,在太阳能光水解制氢领域有重要应用。但是目前仍存在催化机理模型精确建立的问题需要解决。本项目重点解决的科学问题:金属-半导体异质结界面的等离子体和激子耦合效应。拟通过电化学模版法制备金属-半导体多段一维纳米线,利用纳米线可控的长径比和界面位置,研究体系中光子的吸收,载流子的输运等性能的变化,探明纳米复合物中表面等离子体和激子耦合效应的物理本质,可望得到纳米材料单元组装成异质结后性能变化的机理以及异质结结构-性能关系等结果。因此,本项目研究对于揭示等离子体增强光催化材料的催化机理具有重要的科学意义。

中文关键词: 异质结构;半导体;低维结构;纳米线;光电特性

英文摘要: Plasmonic metal-semiconductor composite photocatalysts has excellent performance of photocatalytic activity under visible light irradiation, which is important in the applications of hydrogen production by solar water-splitting. The next few years will bring major advancements in the development of robust predictive models. This project focuses on science issues: plasmon resonance-exciton coupling effect of the metal-semiconductor heterostructure. In this project one-dimensional metal-semiconductor nanowires were prepared by electrochemical template method and their optical and fluorescence properties with different length-diameter ratio and interface location are compared in order to prove coupling effect of nano-structure. The possible results of performance changes mechanism after nanomaterials assembled in a unit, the heterojunction optimization method and nano-heterostructure scale effect are expected. Therefore the study of the project have important scientific significance in revealing the plasma photocatalytic strengthening mechanism.

英文关键词: heterostructure;semiconductor;low-dimensional structure;nanowires;electro-optical

成为VIP会员查看完整内容
0

相关内容

【报告分享】中国能源企业低碳转型白皮书,56页pdf
专知会员服务
21+阅读 · 2022年3月23日
专知会员服务
50+阅读 · 2021年10月16日
制造业数字化转型路线图,67页pdf
专知会员服务
75+阅读 · 2021年10月11日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
小米卷轴屏手机已在路上?
ZEALER订阅号
0+阅读 · 2021年12月19日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【报告分享】中国能源企业低碳转型白皮书,56页pdf
专知会员服务
21+阅读 · 2022年3月23日
专知会员服务
50+阅读 · 2021年10月16日
制造业数字化转型路线图,67页pdf
专知会员服务
75+阅读 · 2021年10月11日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员