Analog mixed-signal (AMS) devices promise faster, more energy-efficient deep neural network (DNN) inference than their digital counterparts. However, recent studies show that DNNs on AMS devices with fixed-point numbers can incur an accuracy penalty because of precision loss. To mitigate this penalty, we present a novel AMS-compatible adaptive block floating-point (ABFP) number representation. We also introduce amplification (or gain) as a method for increasing the accuracy of the number representation without increasing the bit precision of the output. We evaluate the effectiveness of ABFP on the DNNs in the MLPerf datacenter inference benchmark -- realizing less than $1\%$ loss in accuracy compared to FLOAT32. We also propose a novel method of finetuning for AMS devices, Differential Noise Finetuning (DNF), which samples device noise to speed up finetuning compared to conventional Quantization-Aware Training.
翻译:模拟混合信号装置(AMS)与数字对等装置相比,具有更快、更节能的深神经网络(DNN)的推论可能更快、更高效。然而,最近的研究表明,固定点数的AMS装置上的DNN可能由于精确损失而产生准确性处罚。为了减轻这一处罚,我们提出了一个新型的AMS兼容性适应性块状浮点数(ABFP)数字表示法。我们还采用放大(或增益)作为提高数字表示的准确性的方法,同时不提高输出的比分精确度。我们评估了MLPerf数据中心推论基准中ABF对DNF的效用 -- -- 与FLOAT32相比,准确性损失不到1美元。我们还提出了一种新型的AMS装置微调方法,即差异噪声微调(DNF),即样品将噪音用于比常规的量化软件培训加速微调。