Speech command recognition (SCR) has been commonly used on resource constrained devices to achieve hands-free user experience. However, in real applications, confusion among commands with similar pronunciations often happens due to the limited capacity of small models deployed on edge devices, which drastically affects the user experience. In this paper, inspired by the advances of discriminative training in speech recognition, we propose a novel minimize sequential confusion error (MSCE) training criterion particularly for SCR, aiming to alleviate the command confusion problem. Specifically, we aim to improve the ability of discriminating the target command from other commands on the basis of MCE discriminative criteria. We define the likelihood of different commands through connectionist temporal classification (CTC). During training, we propose several strategies to use prior knowledge creating a confusing sequence set for similar-sounding command instead of creating the whole non-target command set, which can better save the training resources and effectively reduce command confusion errors. Specifically, we design and compare three different strategies for confusing set construction. By using our proposed method, we can relatively reduce the False Reject Rate~(FRR) by 33.7% at 0.01 False Alarm Rate~(FAR) and confusion errors by 18.28% on our collected speech command set.


翻译:然而,在实际应用中,使用类似发音指令之间的混乱经常发生,原因是在边缘设备上部署的小模型能力有限,这严重影响了用户的经验。在本文中,由于语音识别方面的歧视性培训的进展,我们提议了一个新的尽量减少连续错(MSCE)的培训标准,特别是针对SCR,目的是减轻指令混乱问题。具体地说,我们的目标是提高根据 MCE 区分目标命令和其他命令指令的能力。我们通过连接时间分类(CTC)确定不同命令的可能性。在培训期间,我们提出几项战略,利用先前的知识为类似命令设定一个混乱的顺序,而不是创建整个非目标命令组,这可以更好地节省培训资源,有效地减少命令混乱错误。具体地说,我们设计并比较了三种不同的策略,以缓解指令混乱的设置。我们采用拟议的方法,我们可以相对地将误差率(FRRR)降低33.7%(FRRR),在0.01错误误差率~(FAR)和错误差18.28%中我们收集了18.28%的语音。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员