Effort estimation is an integral part of activities planning in Agile iterative development. An Agile team estimates the effort of a task based on the available information which is usually conveyed through documentation. However, as documentation has a lower priority in Agile, little is known about how documentation effort can be optimized while achieving accurate estimation. Hence, to help practitioners achieve just-enough documentation for effort estimation, we investigated the different types of documented information that practitioners considered useful for effort estimation. We conducted a survey study with 121 Agile practitioners across 25 countries. Our survey results showed that (1) despite the lower priority of documentation in Agile practices, 98% of the respondents considered documented information moderately to extremely important when estimating effort, (2) 73% of them reported that they would re-estimate a task when the documented information was changed, and (3) functional requirements, user stories, definition of done, UI wireframes, acceptance criteria, and task dependencies were ranked as the most useful types of documented information for effort estimation. Nevertheless, many respondents reported that these useful types of documented information were occasionally changing or missing. Based on our study results, we provide recommendations for agile practitioners on how effort estimation can be improved by focusing on just-enough documentation.


翻译:评估是Agile迭代开发活动规划的一个组成部分。一个Agile小组根据通常通过文件传递的现有资料估计一项任务的努力。然而,由于文件在Agile中属于较低优先,因此对于文件工作如何在获得准确估计的同时加以优化知之甚少。因此,为了帮助从业者实现公正获得的文件记录,我们调查了执业者认为对工作估计最有用的各类文件资料。我们与25个国家的121名从业者进行了一项调查研究。我们的调查结果表明:(1)尽管Agile做法的文件优先程度较低,但98%的受访者认为文件资料在估算工作时意义不大,但98%的受访者认为文件资料极为重要。 (2) 其中73%的受访者报告说,在文件记录资料发生变化时,他们将重新估计一项任务;(3) 功能要求、用户故事、定义、UIU电线框架、接受标准和任务依赖关系被评为最有用的文件信息类型,供工作估计。然而,许多受访者报告说,这些有用的文件资料有时会改变或丢失。我们根据研究结果,我们向敏化从业者提出建议,说明如何改进工作估计工作。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
14+阅读 · 2020年12月17日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员